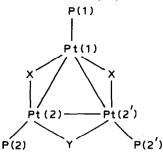
Preliminary communication

FACILITATION OF THE SUBSTITUTION REACTIONS OF SULPHUR DIOXIDE CLUSTER COMPOUNDS OF PLATINUM BY AMINE *N*-OXIDES

MALCOLM F. HALLAM and D. MICHAEL P. MINGOS*

Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR (Great Britain) (Received July 24th, 1986)

Summary


Me₃NO has been used to facilitate the substitution reactions of the *triangulo*platinum clusters $[Pt_3(\mu-SO_2)_3(PR_3)_3]$ (PR₃ = PCy₃ or PPh₃) with CO and halide anions. In the absence of Me₃NO a benzene solution of $[Pt_3(SO_2)_3(PCy_3)_3]$ gives only partially substituted products with CO, but the addition of Me₃NO leads to a high yield conversion to $[Pt_3(CO)_3(PCy_3)_3]$. Me₃NO has also been used in the synthesis of the novel 44-electron anionic clusters $[Pt_3(\mu-X)(\mu-SO_2)_2(PCy_3)_3]^-$ (X = Cl or Br).

The facilitation of substitution reactions of metal carbonyls by trimethylamine N-oxide (Me₃NO) is well documented, and has been found to be particularly efficient for compounds where the CO stretching frequency exceeds 2000 cm⁻¹ [1,2]. Since Me₃NO is known to react with SO₂ to form the adduct Me₃NSO₃ [3], we have investigated the effect of Me₃NO on the substitution reactions of the *triangulo*-platinum cluster compounds [Pt₃(μ -SO₂)₃(PR₃)₃] (PR₃ = PPh₃ or PCy₃) [4,5].

A benzene solution of $[Pt_3(SO_2)_3(PCy_3)_3]$ (1a) reacts with CO (1 atm, rt) to give $[Pt_3(\mu-SO_2)(\mu-CO)_2(PCy_3)_3]$ (2) as the predominant product, and smaller quantities of $[Pt_2(\mu-SO_2)(CO)_2(PCy_3)_2]$ are also formed. The *triangulo*-cluster 2 was characterised by ³¹P and ¹⁹⁵Pt NMR and the data are summarised in Table 1. The relevant ³¹P NMR spectrum is shown in Fig. 1. Even with prolonged exposure to CO and with the reaction temperature raised to 60°C no conversion to the fully substituted derivative was observed. Addition of Me₃NO to (2) led to the isolation of the fully substituted derivative $[Pt_3(CO)_3(PCy_3)_3]$ [5] in high yield (90%) even under ambient conditions. The extent of the acceleration of the rate induced by Me₃NO depended on the mole ratio, 3 mol equivalents 6–8 h and 20 mol equivalents 2–3 h for complete conversion.

The accelerating effect of Me₃NO has also been utilized in the synthesis of a new class of anionic 44-electron *triangulo*-cluster compounds of platinum with bridging halide ligands. The addition of quaternary ammonium halide salts, R_4NX (X = Cl

TABLE 1 SUMMARY OF ³¹P(¹H) AND ¹⁹⁵Pt(¹H) NMR DATA

$_{2}(\mu - SO_{2})(PCy_{3})_{3}]$	

	P(1)	P(2)	P(2')	Pt(1)	Pt(2)	Pt(2')
δ (ppm)	82.2	61.9	61.9	-4011	- 4515	- 4515
J (Hz) P(1)		51	51	5134	449	449
P(2)			62	372	4055	301
P(2')				372	301	4055
Pt(1)					1830	1830
Pt(2)						

 $[Pt_{3}(\mu-SO_{2})_{2}(\mu-Cl)(PPh_{3})_{3}]^{-}$

	P (1)	P (2)	P(2')	Pt(1)	Pt(2)	Pt(2')
δ (ppm)	4.0	17.3	17.3	· · · · · · · · · · · · · · · · · · ·		·····
J (Hz) P(1)		62	62	4599	431	431
P(2)			46	300	5469	345
P(2')				300	345	5469
	P(1)	P(2)	P(2')	Pt(1)	Pt(2)	Pt(2')
δ (ppm)						
δ (ppm)	P(1) 12.9	P(2) 28.9	P(2') 28.9	Pt(1) - 5977	Pt(2) - 4653	Pt(2') -4653
δ (ppm) J (Hz) P(1)						
		28.9	28.9	- 5977	- 4653	- 4653
J (Hz) P(1)		28.9	28.9 59	- 5977 4341	- 4653 352	- 4 653 352
P(2)		28.9	28.9 59	- 5977 4341 314	- 4653 352 4963	-4653 352 245

or Br), in ethanol, to solutions of $[Pt_3(SO_2)_3(PPh_3)_3]$ (1b) in benzene gives high yields of the corresponding salts $[Pt_3(\mu-X)(\mu-SO_2)_2(PPh_3)_3]^-$ (X = Cl, 3a; X = Br, 3b). The corresponding reaction with $[Pt_3(SO_2)_3(PCy_3)_3]$ (1a) is very slow and incomplete even after 2 d. The addition of Me₃NO leads to complete conversion to $[Pt_3(\mu-X)(SO_2)_2(PCy_3)_3]^-$ (X = Cl, 3c; X = Br, 3d) after 15 min at room temperature. The anionic 44-electron cluster compounds 3 have been characterised using ³¹P and ¹⁹⁵Pt NMR techniques and some representative results are summarised in Table 1. The ¹⁹⁵Pt NMR spectrum of $[Pt_3(\mu-Cl)(\mu-SO_2)_2(PCy_3)_3]^-$ is illustrated in Fig. 2 together with the computer simulated spectrum.

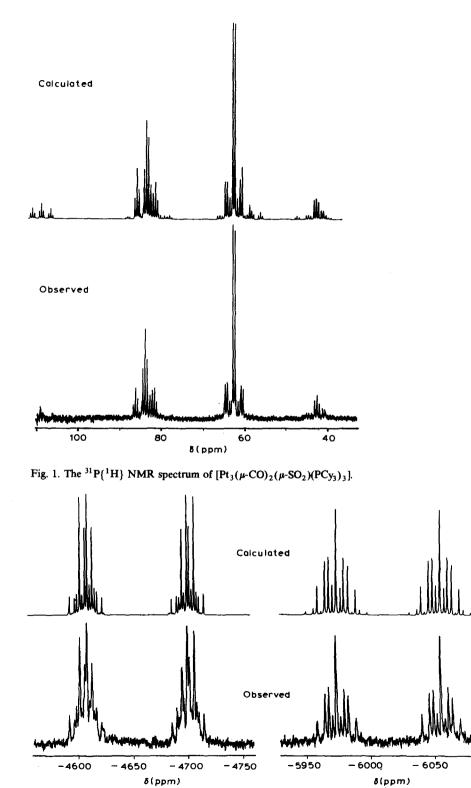


Fig. 2. The ${}^{195}Pt{}^{1}H{}$ NMR spectrum of $[Pt_3(\mu-SO_2)_2(\mu-Cl)(PCy_3)_3]^-$.

The anionic *triangulo*-clusters 3 are more nucleophilic than the corresponding neutral 42-electron clusters 1a and 1b and, for example, will react with $[AuPR_3]^+$ to give successively tetrahedral Pt₃Au and Pt₃Au₂ cluster compounds. These compounds have been characterised by single crystal X-ray diffraction studies [6–8] and shown to retain a platinum-platinum bonded triangle of metal atoms. The metal-metal bond lengths in these clusters have been interpreted by means of molecular orbital calculations [9].

The usefulness of the labilization process described here for substitution reactions of other mono- and poly-nuclear SO_2 compounds is currently being investigated.

Acknowledgement

The S.E.R.C. is thanked for financial support, Johnson-Matthey Ltd. for a generous gift of gold and platinum metals, and D.J. Sherman for some assistance with the NMR analysis.

References

- 1 T.-Y. Luh, Coord. Chem. Rev., 60 (1984) 255.
- 2 U. Koelle, J. Organomet. Chem., 133 (1977) 53.
- 3 J.R. Malpass in E.O. Sutherland (Ed.), Comprehensive Organic Chemistry, 2 (1979) 40, Pergamon Press, Oxford.
- 4 D.M.P. Mingos and R.W.M. Wardle, Trans. Met. Chem., 10 (1985) 441.
- 5 A. Moor, P.S. Pregosin and L.M. Venanzi, Inorg. Chim. Acta, 48 (1981) 153; 61 (1982) 135.
- 6 D.M.P. Mingos, C.E. Briant and R.W.M. Wardle, J. Organomet. Chem., 267 (1984) C49.
- 7 D.M.P. Mingos and R.W.M. Wardle, J. Chem. Soc., Dalton Trans., (1986) 73.
- 8 D.M.P. Mingos, P. Oster and D.J. Sherman, J. Organomet. Chem., submitted for publication.
- 9 D.I. Gilmour and D.M.P. Mingos, J. Organomet. Chem., 302 (1986) 127.